
Designing a DSL for
Information Systems Architecture

Eoin Woods
UBS Investment Bank
www.eoinwoods.info

Nick Rozanski
Marks and Spencer
www.rozanski.org.uk

Timetable

09:00 – 09:10 Introductions

09:10 – 09:25 Presentation: Architectural Description

09:25 – 09:40 Exercise 1: What Do We Need?

09:40 – 09:50 Collect outputs of exercise

09:50 – 10:10 Presentation: Architectural Notations

10:10 – 10:25 Exercise 2: Quivering at Arrows

11:00 – 11:20 Collect outputs of exercise

11:20 – 11:30 Summary and recap

Optional Exercise 3: Testing Your Vision

Goals

� Existing description notations have proved to
be weak in practice

� Architectural constructs lost as we move to
implementationimplementation

� Could something better be done?

� We’ll explore this during the session

Timetable

09:00 – 09:10 Introductions

09:10 – 09:25 Presentation: Architectural Description

09:25 – 09:40 Exercise 1: What Do We Need?

09:40 – 09:50 Collect outputs of exercise

09:50 – 10:10 Presentation: Architectural Notations

10:10 – 10:25 Exercise 2: Quivering at Arrows

11:00 – 11:20 Collect outputs of exercise

11:20 – 11:30 Summary and recap

Optional Exercise 3: Testing Your Vision

What is Software Architecture

� The common definition:

� The software architecture of a program or
computing system is the structure or structures
of the system, which comprise software of the system, which comprise software
elements the externally visible qualities of
those elements, and the relationships among
them

� Len Bass, Paul Clements and Rick Kazman
Software Architecture in Practice, 2nd Edition

What is Software Architecture

� An alternative definition …
� The set of system design decisions that dictate the
fundamental structure and properties of a system

� Thus, the set of decisions that will cause the � Thus, the set of decisions that will cause the
system to fail if made incorrectly

� The set of design decisions which, if made
wrongly, cause your project to be cancelled!

Architectural Views

� Decompose an architectural description

� Target one or more concerns

� Focus attention on one piece of the problem � Focus attention on one piece of the problem
(one type of structure)

� functional, deployment, information, …

� Aid effective communication

� appropriate representations for the view

Architectural Views

Development ViewFunctional View

Information View

Concurrency View

Deployment View

Operational View

Role of the Description

� Communicate the architecture

� System overview (with selected detail)

� Ongoing reference documentationOngoing reference documentation

� For architects, developers, testers, support staff,...

� Analysis of the architecture

� Performance, availability, evolution, …

� Could it also be the basis of the
implementation?

� And so survive at runtime

Descriptive Difficulties

� An AD contains architectural elements
� Middleware, hardware, component types,
connectors, information flows, …

� The content required varies by context� The content required varies by context
� Varying type, precision, detail

� No link from AD to implementation

Possible Future Approach

Views
Views
Views

Component Component Component

Hand coded application
components within
configured “boxes”

Encoding

Configuration

Runtime Platform

Note: encoding/simple
transformation not code
generation!

Note subtle difference from MDA/MDD – architectural description configures a runtime platform directly
rather than trying to generate artefacts for a general purpose runtime environment like J2EE.

Timetable

09:00 – 09:10 Introductions

09:10 – 09:25 Presentation: Architectural Description

09:25 – 09:40 Exercise 1: What Do We Need?

09:40 – 09:50 Collect outputs of exercise

09:50 – 10:10 Presentation: Architectural Notations

10:10 – 10:25 Exercise 2: Quivering at Arrows

11:00 – 11:20 Collect outputs of exercise

11:20 – 11:30 Summary and recap

Optional Exercise 3: Testing Your Vision

Exercise 1 – What Do We Need?

� Consider what needs to be described for the
architecture of an information system

� Modules? Connectors? Functions? Nodes?
Technologies? Data Stores? Constraints?Technologies? Data Stores? Constraints?

� How you could use such a description?

� Static documentation?

� Analysis / simulation? (Of what? Why?)

� Code generation?

� Configuration of runtime environment?

Exercise 1 – What Do We Need?

� Collect Outputs

Timetable

09:00 – 09:10 Introductions

09:10 – 09:25 Presentation: Architectural Description

09:25 – 09:40 Exercise 1: What Do We Need?

09:40 – 09:50 Collect outputs of exercise

09:50 – 10:10 Presentation: Architectural Notations

10:10 – 10:25 Exercise 2: Quivering at Arrows

11:00 – 11:20 Collect outputs of exercise

11:20 – 11:30 Summary and recap

Optional Exercise 3: Testing Your Vision

Notations – 3 Approaches

� Formal textual languages

� Architecture Description Languages

� ACME, Wright, xADL, …

General purpose DSLs for the architectural domain� General purpose DSLs for the architectural domain

� Specific graphical notations

� “Boxes and Lines” usually ad-hoc notations

� Usually very specific to a particular situation

� Tailored general purpose notations

� i.e. UML the de-facto standard

Notations - ADLs

� Many exist in the research domain

� Wright, ACME, UniCon, xADL, …

� www.sei.cmu.edu/architecture/adl.html

� Few (none) have seen industrial use

� Restrictive assumptions

� Lack of multiple views

� Lack of domain/technology specifics

� Tools

� Technology transfer

Notations - ADLs

A simple C/S System described in ACME (from CMU) …

http://www.cs.cmu.edu/~acme/

Notations - Boxes and Lines

� The most popular architectural notation

� Flexible

� Good tool support

� Low learning curve

� Limitations

� Ambiguity

� Need to explain notation

� Time to design notation

Notations - Boxes and Lines

Notations - UML

� The de-facto “formal” notation

� General purpose software modeling language

� Little specific architecture supportLittle specific architecture support

� Needs abused or extended for architecture

� Widely understood, wide tool support

� Although depth of understanding varies

Notations - UML

The UML component model … one of UML’s fairly useful architectural models

Variable Capture
Variable

Reporting
Component interface
and its use by another{type=XML RPC,

protocol=HTTP,

«external»
Temperature Monitor

Alarm Initiator

Limit Condition

UML "component" represents
system element

and its use by another
component

Stereotype used to indicate
an external entity

protocol=HTTP,
number=10 concurrent}

Tagged values used
to make interface

characteristics clear

UML as an ADL

� UML is really an OOD notation
� Grown over the years

� Everything is a class

Architectural constructs are basic� Architectural constructs are basic
� “Component”, interface, dependency

� Node, link

� Architects lean heavily on extensions
� Stereotypes, tagged values, notes(!)

� Yet it is the de-facto standard

An Ideal ADL

� What would our ideal notation look like?

� What element types would it contain?

� What could it be used for?� What could it be used for?

� Whose needs would it address?

� What would make it different from existing
approaches?

A Proto-ADL

One possibility … a simple evolution and specialisation of UML

Another example, for stakeholders who need a more informal and “pictorial” style

A Proto-ADL

Timetable

09:00 – 09:10 Introductions

09:10 – 09:25 Presentation: Architectural Description

09:25 – 09:40 Exercise 1: What Do We Need?

09:40 – 09:50 Collect outputs of exercise

09:50 – 10:10 Presentation: Architectural Notations

10:10 – 10:25 Exercise 2: Quivering at Arrows

11:00 – 11:20 Collect outputs of exercise

11:20 – 11:30 Summary and recap

Optional Exercise 3: Testing Your Vision

Exercise 2: Quivering at Arrows

� Attempt to design our own language for
information systems architectural description

� Pick a fairly narrow domain to keep the problem
manageablemanageable

� Sketch a graphical ADL language considering

� Component types you’ll need

� Connector types needed to link components

� How to define deployment to runtime nodes

� Defining environmental constraints

� Environment configuration

Exercise 2: Quivering at Arrows

� Try to define some of the following:

� Language entities, relationships & semantics

� Syntax (graphical and/or textual)

� What it can be used for?

� What tools would you need to provide?

� Examples

� Focus on architectural constructs

� Don’t worry about business logic

� Assume manual coding of components

Presentations

� Each group to present their language

� Keep presentations to about 5 minutes

Timetable

09:00 – 09:10 Introductions

09:10 – 09:25 Presentation: Architectural Description

09:25 – 09:40 Exercise 1: What Do We Need?

09:40 – 09:50 Collect outputs of exercise

09:50 – 10:10 Presentation: Architectural Notations

10:10 – 10:25 Exercise 2: Quivering at Arrows

11:00 – 11:20 Collect outputs of exercise

11:20 – 11:30 Summary and recap

Optional Exercise 3: Testing Your Vision

Bringing It To Life

ViewsViewsViews

Component Component Component

Going back to our possible future architecture environment ...

ViewsViews

Encoding

Configuration

Runtime Platform

What would the runtime platform need to provide?
=> Types of component, connector, declarative services, monitoring, reflection,...

An Architecture Runtime Platform

� An runtime platform would provide
architecture constructs as first class elements

� Component, interface, queue, message bus, node,
information store, ...information store, ...

� This would allow system architecture to be
extracted from running systems

� Reverse engineering

� Monitoring and analysis

� System management

� Developer support (in IDEs, debuggers, ...)

Summary

� Today we lose most of our architectural
constructs when we get to runtime
� Current approaches don’t change this significantly

DSLs (ADLs) may give us better architectural � DSLs (ADLs) may give us better architectural
description techniques
� More natural and effective descriptions than UML

� If we could create the matching runtime
platform, the architectural constructs would
live on at runtime

For Help With Today’s Realities ...

Software Systems Architecture:
Working With Stakeholders
Using Viewpoints and Using Viewpoints and
Perspectives

Nick Rozanski & Eoin Woods
Addison Wesley, 2005

http://www.viewpoints-and-perspectives.info

Thank you

Eoin Woods
UBS Investment Bank
www.eoinwoods.info

Nick Rozanski
Marks and Spencer

www.nick.rozanski.org.uk

Thank you

Appendix
Exercise 3 (Optional)Exercise 3 (Optional)

Exercise 3: Testing Your Vision

� Given your DSL, what primitives would a
supporting runtime platform need to provide?

� Presumably the set of primitives in the DSL

Plus a set of services to support applications� Plus a set of services to support applications

� Define what your runtime would provide

� Try to represent a small system in your DSL
� Would your system actually run on your platform?

� What are you missing in your DSL or platform?

� List anything else needed that is out of scope

� How would you provide these missing pieces?

Experience Reports

� Did your DSL / platform combination hang
together and allow a system to be created?

� What were you missing that you needed to
add?add?

� What was out of scope and how would you
provide these aspects of the system
definition?

Appendix
UML for Architectural DescriptionUML for Architectural Description

UML for Functional Structure

UML for Deployment Structure

UML for Concurrency Structure

UML for Information Structure

Deduction

Derived

Measure

StatsSet Variable

1

0..n

0..n0..n
Deduction StatsSet

Observation

Variable

0..n

1

0..n

1

But how about
• Entity life history?
• Data flow?
• Volumetrics?
• Ownership?

