Designing a DSL for

!'_Information Systems Architecture

Eoin Woods Nick Rozanski
UBS Investment Bank Marks and Spencer
Wwww.eoinwoods.info www.rozanski.org.uk

i Timetable

09:00 - 09:10
09:10 - 09:25

09:25 - 09:40
09:40 — 09:50
09:50 -10:10
10:10-10:25
11:00-11:20

11:20-11:30
Optional

Introductions

Presentation: Architectural Description
Exercise 1: What Do We Need?
Collect outputs of exercise
Presentation: Architectural Notations
Exercise 2: Quivering at Arrows
Collect outputs of exercise

Summary and recap

Exercise 3: Testing Your Vision

i Goals

= EXisting description notations have proved to
be weak in practice

s Architectural constructs lost as we move to
implementation

= Could something better be done?
= We'll explore this during the session

i Timetable

09:00 - 09:10
09:10 - 09:25

09:25 - 09:40
09:40 — 09:50
09:50-10:10

10:10-10:25
11:00-11:20
11:20-11:30
Optional

Introductions

Presentation: Architectural Description
Exercise 1: What Do We Need?
Collect outputs of exercise
Presentation: Architectural Notations
Exercise 2: Quivering at Arrows
Collect outputs of exercise

Summary and recap

Exercise 3: Testing Your Vision

i What is Software Architecture

= The common definition:

« The software architecture of a program or
computing system is the structure or structures
of the system, which comprise software
elements the externally visible qualities of
those elements, and the relationships among
them

= Len Bass, Paul Clements and Rick Kazman
Software Architecture in Practice, 2nd Edition

i What is Software Architecture

= An alternative definition ...

» The set of system design decisions that dictate the
funadamental structure and properties of a system

s Thus, the set of decisions that will cause the
system to fail if made incorrectly

« The set of design decisions which, if made
wrongly, cause your project to be cancelled!

i Architectural Views

= Decompose an architectural description
= Target one or more concerns

= Focus attention on one piece of the problem
(one type of structure)
« functional, deployment, information, ...

= Aid effective communication
= appropriate representations for the view

i Architectural Views

Functional View Development View

ooo

Information View Deployment View

Concurrency View Operational View

i Role of the Description

= Communicate the architecture
= System overview (with selected detail)

= Ongoing reference documentation
= For architects, developers, testers, support staff,...
= Analysis of the architecture
= Performance, availability, evolution, ...

s Could it also be the basis of the
implementation?

= And so survive at runtime

i Descriptive Difficulties

s An AD contains architectural elements

= Middleware, hardware, component types,
connectors, information flows, ...

= The content required varies by context
= Varying type, precision, detail
= No link from AD to implementation

i Possible Future Approach

Hand coded application
components within
configured “boxes”

Component Component Component
U u

Runtime Platform

Encoding

Note: encoding/simple
transformation not code

generation! Configuration

Note subtie difference from MDA/MDD — architectural description configures a runtime platform directly
rather than trying to generate artefacts for a general purpose runtime environment like J2EE.

* Timetable

09:00 - 09:10
09:10 - 09:25
09:25 - 09:40
09:40 — 09:50
09:50 - 10:10
10:10-10:25
11:00-11:20

11:20-11:30
Optional

Introductions

Presentation: Architectural Description
Exercise 1: What Do We Need?
Collect outputs of exercise
Presentation: Architectural Notations
Exercise 2: Quivering at Arrows
Collect outputs of exercise

Summary and recap

Exercise 3: Testing Your Vision

i Exercise 1 — What Do We Need?

= Consider what needs to be described for the
architecture of an information system

= Modules? Connectors? Functions? Nodes?
Technologies? Data Stores? Constraints?
= How you could use such a description?
= Static documentation?
= Analysis / simulation? (Of what? Why?)
= Code generation?
= Configuration of runtime environment?

‘L Exercise 1 — What Do We Need?

= Collect Outputs

* Timetable

09:00 - 09:10
09:10 - 09:25
09:25 - 09:40
09:40 — 09:50
09:50-10:10
10:10-10:25
11:00-11:20

11:20-11:30
Optional

Introductions

Presentation: Architectural Description
Exercise 1. What Do We Need?
Collect outputs of exercise
Presentation: Architectural Notations
Exercise 2: Quivering at Arrows
Collect outputs of exercise

Summary and recap

Exercise 3: Testing Your Vision

i Notations — 3 Approaches

= Formal textual languages

= Architecture Description Languages
= ACME, Wright, xADL, ...

= General purpose DSLs for the architectural domain
= Specific graphical notations

= 'Boxes and Lines” usually ad-hoc notations

= Usually very specific to a particular situation
= Tailored general purpose notations

= i.e. UML the de-facto standard

i Notations - ADLs

= Many exist in the research domain

= Wright, ACME, UniCon, xADL, ...

= Www.sei.cmu.edu/architecture/adl.html
= Few (none) have seen industrial use

= Restrictive assumptions

= Lack of multiple views

= Lack of domain/technology specifics

= Tools

= Technology transfer

i Notations - ADLs

A simple C/S System described in ACME (from CMU) ...

Syatem almple_ca m
Compeneant client = {
Pt aend=-requeat
Propert lea { feacp—atyle | atyle=id = c1ient—aemree:
UniCen=-atyle @ Atyle—id m &a;
AcnYod=ciadle ! erterns] m "OIDE=LTR/elient. &" F}

Companant Aoy = |
Pert recdalve=ragquest
Propert lea { {derpotence | Boclean = trne;
mAY=conenyren b=l enta @ integer = 1,
AcnYem=cadde | external = "ODE=-LTE am=ayr &" T}

Comnecter rpe = o
Rl {ealle, callew)
Propet len { aynshrenena | Bodlesn = By
mAv=rolen | integer = 2
protosyl | Weight = 0 " T}

Attachmenta o
client . send=reyneat to rpe. caller |

asrvey veceive—reqmeat to rpe.calles b Wtp://www.cs.cmu.edu/~acme/

i Notations - Boxes and Lines

= The most popular architectural notation
= Flexible
= Good tool support
= Low learning curve

= Limitations
= Ambiguity
= Need to explain notation
= Time to design notation

i Notations - Boxes and Lines

Customer
Care
Interface

Customer
Information
System

Web Browser

!

A

>

Web Shop

-

Customer
Management
Interface

!

#

Order
Processor

Message
Bus

Product
Catalog

Fulfilment

Order

i Notations - UML

s The de-facto “formal” notation

= General purpose software modeling language
=« Little specific architecture support
= Needs abused or extended for architecture

= Widely understood, wide tool support
= Although depth of understanding varies

i Notations - UML

The UML component model ... one of UML's fairly useful architectural models

Variable

Reportin Variable Capture

Component interfac
~ and its use by another

{type=XML RPC,

protocol=HTTP, -
number=10 concurrent} - -~ component
7 L
«external» / Limit Condition
Temperature Monitor //
/)\
7 /
/ /
/ Tagged values us -
/ to make interface Alarm Initiator
/ characteristics clear N .
N
Stereotype used to indicate AN N
an external entity N

UML "component" represents
system element

i UML as an ADL

= UML is really an OOD notation
= Grown over the years
= Everything is a class

s Architectural constructs are basic

= Component”, interface, dependency
= Node, link

= Architects lean heavily on extensions
= Stereotypes, tagged values, notes(!)

s Yetitis the de-facto standard

i An Ideal ADL

= What would our ideal notation look like?
nat element types would it contain?
nat could it be used for?

nose needs would it address?

nat would make it different from existing
approaches?

W
W
W
W

i A Proto-ADL

One possibility ... a simple evolution and specialisation of UML

Explicit message queues

added (how to show filtering?

Existing UML components for runtime
) elements (but what are these really?)

Message$j
Listener

CSP Request

Alpha

external actor types

(which types to

System Standard icons for j

provide?)

Processor

(1] Work”ﬂn/[[I User Action
g]

Work Item Z] {type=RMI}
ﬁ_

CSP System
User Work 2]

Bench

Status
Dispatcher

Clear system boundary
(and what does this
mean?)

POSMAN

A/

confirmation status

RPC style
interface

bus (how to show
subscription details?)

Explicit pub/sub message ﬁ

A

Operations
User

Main
Ledger

‘L A Proto-ADL

Another example, for stakeholders who need a more informal and “pictorial” style

DATA CENTRE

STORE J

DISTRIBUTION CENTRE 1 LABEL PRINTER

* Timetable

09:00 — 09:10
09:10 — 09:25

09:25 - 09:40
09:40 — 09:50
09:50-10:10
10:10-10:25
11:00-11:20

11:20-11:30
Optional

Introductions

Presentation: Architectural Description
Exercise 1: What Do We Need?
Collect outputs of exercise
Presentation: Architectural Notations
Exercise 2: Quivering at Arrows
Collect outputs of exercise

Summary and recap

Exercise 3: Testing Your Vision

i Exercise 2: Quivering at Arrows

= Attempt to design our own language for
information systems architectural description

« Pick a fairly narrow domain to keep the problem
manageable
= Sketch a graphical ADL language considering
« Component types you'll need
= Connector types needed to link components
« How to define deployment to runtime nodes
= Defining environmental constraints
= Environment configuration

i Exercise 2: Quivering at Arrows

= Try to define some of the following:
= Language entities, relationships & semantics
= Syntax (graphical and/or textual)
=« What it can be used for?
= What tools would you need to provide?
= Examples

= Focus on architectural constructs
= Dont worry about business logic
= Assume manual coding of components

i Presentations

= Each group to present their language
= Keep presentations to about 5 minutes

* Timetable

09:00 — 09:10
09:10 — 09:25

09:25 - 09:40
09:40 — 09:50
09:50 - 10:10
10:10-10:25
11:00-11:20

11:20-11:30
Optional

Introductions

Presentation: Architectural Description
Exercise 1: What Do We Need?
Collect outputs of exercise
Presentation: Architectural Notations
Exercise 2: Quivering at Arrows
Collect outputs of exercise

Summary and recap

Exercise 3: Testing Your Vision

* Bringing It To Life

Going back to our possible future architecture environment ...

Component Component Component
U u

Runtime Platform

Encoding

Configuration

What would the runtime platform need to provide?
=> Types of component, connector, declarative services, monitoring, reflection,...

i An Architecture Runtime Platform

= An runtime platform would provide
architecture constructs as first class elements

« Component, interface, queue, message bus, node,
information store, ...
= This would allow system architecture to be
extracted from running systems
= Reverse engineering
= Monitoring and analysis
= System management
= Developer support (in IDEs, debuggers, ...)

i Summary

= Today we lose most of our architectural
constructs when we get to runtime

= Current approaches don’t change this significantly

= DSLs (ADLs) may give us better architectural
description techniques

« More natural and effective descriptions than UML

= If we could create the matching runtime

platform, the architectural constructs would
live on at runtime

‘L For Help With Today’s Realities ...

Software Systems Architecture:][\[El{#)k
Working With Stakeholders Amhngg[ure
Using Viewpoints and | |
Perspectives . ‘ .

Nick Rozanski & Eoin Woods
Addison Wesley, 2005

ing With Stakeholders Using Viewpeints and Perspectives
NICK ROZANSKI - EOIN W0ODS

http://www.viewpoints—and-perspectives.info

Eoin Woods Nick Rozanski
UBS Investment Bank Marks and Spencer
WWW.eoinwoods.info www.nick.rozanski.org.uk

Thank you

Appendix
Exercise 3 (Optional)

:L Exercise 3: Testing Your Vision

= Given your DSL, what primitives would a
supporting runtime platform need to provide?
= Presumably the set of primitives in the DSL
= Plus a set of services to support applications

= Define what your runtime would provide
= [ry to represent a smal/ system in your DSL

= Would your system actually run on your platform?
= What are you missing in your DSL or platform?

= List anything else needed that is out of scope
= How would you provide these missing pieces?

i Experience Reports

= Did your DSL / platform combination hang
together and allow a system to be created?

= What were you missing that you needed to
add?
= What was out of scope and how would you

provide these aspects of the system
definition?

+

Appendix
UML for Architectural Description

i UML for Functional Structure

UML component
represents an

element
Statisti 2 StatsQuery element interfac
GUI Client @ atistics (¢ Statistics Store and dependent
Accessor L
.) elements using it
ClientActions
dtype=SOAP}
~StatsUpdate
tagged values used to Statistics ﬂ
indicate interface Calculator
characteristics if needed $:|
1 <<external>
} Bulk Loader

stereotype used ’
to indicate
external entity

UML for Deployment Structure

Processes/

functional

elements mapped

Data Centre Resident to hardware
Primary Server Database Server
i {model=DellSC430, {model=SunFIreV440,
Client PC memory=8GB, CPU=2x3GHz} memory=16GB, CPU=2x1.6GBZ,
10=FiberChannel}
{memory>=500MB,
CPU>=1.8GHz}
<<process>>
Stats_Server ; <<processgroup>>
<<process>> i DBMS_Process_Grp
Stats_Client
L] << >>
oot
Loader
UML nodes]
showing / type=FCp.._
hardware devices /
Disk Array Tagged values
{model=StorEdge3510FC, record hardware
y capacity=500GB} requirements
Packages show

logical hardware
groups

Relationships
show required
inter-node links

i UML for Concurrency Structure

process stereotype to
show task structure

functional elements
mapped to processes

<<process>> <<process>>
Stats_Client {type=SOAP, Stats_Server
tnspt=HTTP}
. Statistics 5] {type=SQL*Net}
GUI Client
Accessor

IPC shown via

relationships & <<mutex>>

tagged values ExclAccessMutex {type=SAL*Net)

coordination
mechanisms shown via
stereotyped classes

<<processgroup>>
DBMS_Process_Grp

<<process>>
Calculator

Statistics $:]
Calculator

Statistics Store

{type=SQL*Net}

<<process>>
Loader

Bulk Loader

‘L UML for Information Structure

Deduction

Observation

But how about

e Entity life history?
e Data flow?

e \olumetrics?

e Ownership?

