
1

Agile Architecture
how much is enough?

EAC2007
Eoin Woods
UBS Investment Bank
www.ibb.ubs.com/futuresandoptions
www.ubs.com/careers
www.eoinwoods.info

v2 (C) Eoin Woods 2007 2

Introductions
I’m a stream technical architect for UBS 
Investment Bank

Our organisation includes technology architects, 
software (system) architects and stream architects
I’m one of the architects responsible for the ETD area

Software architect for ~9 years
Plus enterprise architecture for ~2 years

Author of “Software Systems Architecture” book 
with Nick Rozanski
IASA Fellow



2

v2 (C) Eoin Woods 2007 3

Enterprise Architecture
IT strategy / business alignment
Technology strategy and standards
Functional architecture

System responsibilities
Integration architecture

System interfaces
Inter-system flow

Cross system common design

Our focus as
stream

architects

v2 (C) Eoin Woods 2007 4

Agile Principles
The agile manifesto values

Individuals and interactions over processes & tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan 

Key motivation is to facilitate efficient delivery and 
change



3

v2 (C) Eoin Woods 2007 5

Agile Practices

Shared workspaceRefactor when needed

Automate routine tasksTest driven

Small teamsSpecify via “stories”

Collaborative designSimplest thing possible

Customer prioritisesCustomer is available

Collective ownershipIterative delivery

Integrate changes oftenRelease frequently

v2 (C) Eoin Woods 2007 6

Common Priorities
Architects and agile teams have many of the 
same priorities

Focus on the consumers of the systems
Efficient delivery of valuable software
Simplification and reduction of cost
Quality & reliability of delivered software
Supporting efficient change
Effectiveness of communication



4

v2 (C) Eoin Woods 2007 7

Architecture / Agile Conflicts
With shared priorities, why can there be conflict?

“Big Up Front Design” (BUFD - large documents)
Document centric vs. delivery centric
Separation of decision making from delivery 
responsibility
Different views on processes and controls
Differing time horizons for return on investment
Architectural priorities vs. “customer” (user) priorities
Agile deliveries in larger change programmes

v2 (C) Eoin Woods 2007 8

Why Agile Architecture?
Avoid retreat to the “ivory tower”

Ensure relevance of what we do
Focus on stakeholders

Make sure we deliver value
Support change

So we deal with the realities of our environment
Work well with development teams

Shared values and priorities
Focus on delivery

Ensures the right priorities



5

v2 (C) Eoin Woods 2007 9

Making Architecture Agile
Expect change, allow for it 

Work incrementally
Be demand driven

Prioritise by customer needs
Be delivery (not document) focused
Make information relevant and accessible
Produce working “software” regularly
Simple, simple, simple (but not naïve)

Process, artefacts, solutions
Simplicity is a precursor for agility

v2 (C) Eoin Woods 2007 10

Organisational Environment

 

Development 
Teams

Architects

Business
Management

External 
Stakeholders

End Users /
SMEs

• Central technology teams
• Legal, Audit, Compliance,…
• Organisation wide initiatives

• Functional needs

• Technology constraints
and direction

• Validation and review

Change 
Teams



6

v2 (C) Eoin Woods 2007 11

Architecture Effectiveness Index
Level 0 – no architectural impact

Architecture largely ignored, seen as irrelevant
Level 1 – Stopping things getting worse

Essential decisions coordinated
Level 2 – Stable and organised

Architecture understood, shared, aids change 
Level 3 – Architecture centric

Architecture is the point of reference for change

v2 (C) Eoin Woods 2007 12

Agile Architecture Practices

• Work with development teams
• Keep backlog visible

People not Process

• Good enough models & docs
• Regularly deliver something that “runs”
• Have solutions for security/DR/HA/…
• Build PoCs for credibility

Software not Documents
• Identify minimal principles 

and share them
• Share information online
• Focus on x-system concerns

Collaboration

•Deliver Incrementally
•Allow reprioritisation
•Identify clear system responsibilities
•Design a catalogue of integration options

Allow for Change



7

v2 (C) Eoin Woods 2007 13

Practices – Allow for Change
Deliver Incrementally

Visible progress, early feedback
Allow reprioritisation

As your customer priorities change
Identify clear system responsibilities

Allow confident extension
Design a catalogue of proven integration options

Limit the choice while solving the problem
Provide clear rationale for making choices
Allow for the special cases as they’re inevitable

v2 (C) Eoin Woods 2007 14

Practices – People not Process
Work with development teams

Don’t drop documents, talk to the teams
Develop things jointly
Great source of knowledge and resources

Keep backlog visible
Let people know what you’re planning



8

v2 (C) Eoin Woods 2007 15

Practices – Software not Docs
Good enough models & docs

But make sure they are good enough!
Regularly deliver something that “runs”

If not raw code, something else that works
Something useful directly or for research purposes

Have solutions for security/DR/HA/…
Rarely solved well by the individual teams
Typically need to work across systems

Build PoCs for credibility
Yours and the solution’s!

v2 (C) Eoin Woods 2007 16

Aside: Good Enough Modelling
What is good enough?

Consider currency, precision, detail, completeness
Our experience suggests

Focus on models where systems are components
Prefer models & databases to pictures
Be precise, even when abstract
Ensure models can be updated easily
Model with a purpose (audience and use)

Areas to consider
Systems, responsibilities, inter-system connections
Shared domain model (so allowing integration)



9

v2 (C) Eoin Woods 2007 17

Practices - Collaboration
Define minimal principles & share them

Small set easily understood & accepted
Choose your battles (high value decisions)

Share information online (e.g. Wikis)
Allow easy access, comment and update

Focus on cross-system concerns
Avoid the system’s areas of responsibility

v2 (C) Eoin Woods 2007 18

Aside: Engaging Teams
Solve their problems

Have proven solutions for integration, security, DR, …
Immediate value to development teams

Jointly develop your architectural principles
Ensure they are understood and agreed

Collaborate rather than police
Review to share & improve, not to govern

Stay out of internal decisions 
Unless invited or you need to avert catastrophe
Collaboration will mean that you have input anyway



10

v2 (C) Eoin Woods 2007 19

Examples
1. Defining a catalogue of integration options
2. Agile modelling
3. Common solutions for family of systems

v2 (C) Eoin Woods 2007 20

Example 1 – Integration Options
Improving an environment with “light touch” EA
Context of many systems linked in many ways
Integration had evolved organically over years

Largely predated messaging
Perl scripts, shell scripts, direct database access, 
stored procedures, pub/sub, file unload/load, …

Each feed worked perfectly well in its own way
But little or no commonality
Difficult to understand, monitor, debug
Very brittle making change difficult



11

v2 (C) Eoin Woods 2007 21

Example 1 – Solution
Apply minimal architecture principles practice to 
define how to integrate systems

Producers independent of consumers
Publish once in neutral form
Identify each interface as bulk or event oriented

Apply catalogue of integration options practice to 
give set to choose from, with rationale for each

Bulk: db to file / file to db via ETL tool in CSV form
Event: messaging via pub/sub product, XML or 3rd

party formats used (e.g. FIX based)
Other options on a case-by-case basis

v2 (C) Eoin Woods 2007 22

Example 1 - Result
Given a set of options and strong rationale, 
people have reacted positively

Previous situation due to lack of existing principles
Never had time (or motivation) for standardising

Still have tactical work going on but the standard 
options are considered first

Choose a standard option if possible
If not, then allow a custom approach but with a plan for 
future rectification

As feeds are rebuilt, we are moving towards our 
desired standardised future state



12

v2 (C) Eoin Woods 2007 23

Example 2 – Agile Modelling
Context is UBS acquisition of a competitor FCM

UBS ETD had ~50 systems
Acquired organisation had ~50 systems
Both complex individually and no one with deep 
knowledge of both
Lots of change needed to achieve integration
Difficult to understand existing and future state 
systems landscapes

v2 (C) Eoin Woods 2007 24

Example 2 - Agile Modelling
Applied the good enough modelling practice

Not enough time for exhaustive modelling exercise
Identified what would deliver value quickly

System level future state (systems and flows)
Just built a model to meet this need

Created a precise, but abstract systems and 
interconnections model in UML using IBM RSM
Created a model (not a picture) to allow multiple uses 
and motivate updates

Never published as a document, just model outputs



13

v2 (C) Eoin Woods 2007 25

Example 2 - Tool Support

ClearCase 
Model 

Repository

XML
Output

Web Doc 
Generation

Custom 
XSLT

Custom Report 
Generation

Custom 
Plugins

CSV 
OutputCustom Data

Extracts

v2 (C) Eoin Woods 2007 26

Example 2 - Example Model View



14

v2 (C) Eoin Woods 2007 27

Example 2 – Generation to Web

v2 (C) Eoin Woods 2007 28

Example 2 – Progress & Results
The model web site is becoming a reference 
point for change teams

Provides database of system & connection definitions
Our RSM extensions allow data to be extracted

So providing motivation for maintenance and use
Use of model allows many views to be quickly 
created from the content

Although Powerpoint/Visio integration still problematic
Keeping currency is a constant challenge



15

v2 (C) Eoin Woods 2007 29

Example 3 – Common Solutions
Example of focused architecture making agile 
development more effective
Context was large tightly coupled systems
Applied focused set of architecture practices

Defining clear system responsibilities
Defining clear, minimal architectural principles
Small amount of common design (messaging)
Provided solution patterns for DR, integration, security
Worked directly with (in) the first teams

v2 (C) Eoin Woods 2007 30

Example 3 – Starting Point

Front 
Office

Systems

Middle Office System
Confirmations

Processing
Settlement
Processing

Payments 
System

 Operations
Users

Trade Store



16

v2 (C) Eoin Woods 2007 31

Example 3 – Result

Front 
Office

Systems

event-based message bus

Confirmations
System

Settlements
System

Payments
System

End User
Workbench

Trade Store

v2 (C) Eoin Woods 2007 32

Example 3 - Results
The architecture work resulted in

Smaller systems, better defined responsibilities
Looser coupling via well defined neutral event model
Development team independence

Has allowed much easier change
Systems can have own development & release cycles
The architecture has enabled overall agility
Overall result is more effective delivery and change



17

v2 (C) Eoin Woods 2007 33

Summary
Making architecture more agile benefits everyone 
(architects, users, dev teams)
Architects share many priorities with the agile 
movement
Small number of effective practices improve 
agility immensely
Agile architecture has worked well in practice and 
made architecture relevant
It’s all about delivering valuable working systems

v2 (C) Eoin Woods 2007 34

Questions and Comments?

Now or to Eoin.Woods@ubs.com


