OT2004 - TU1

Software Architecture Using Viewpoints and Perspectives

Eoin Woods
Artechra Limited
eoin.woods@artechra.com

Nick Rozanski
French Thornton
nick.rozanski@french-thornton.co.uk
Timetable

00:00 – 00:10 Introductions
00:10 – 00:40 Overview of viewpoints
00:40 – 00:50 Identify example systems
00:50 – 01:15 Ex1: identify viewpoints
01:15 – 01:30 Break
01:30 – 01:45 Overview of perspectives
01:45 – 02:15 Ex2: identify perspectives
02:15 – 02:30 Review and discussion
Introductions

Nick Rozanski
- Software architect
- IT/information systems/systems integration
- French Thornton

Eoin Woods
- Software architect
- information systems/Internet/system software
- Artechra (independent)
Introductions

Background

- Met at Sybase (1994 – 1999)
- Once asked “what’s the best architecture book?” - we didn’t have a good answer
- Subsequent research led us to
 - IEEE 1471
 - 4+1, Siemens, RM-ODP, Garland and Anthony
 - Our own viewpoint set
 - Definition of “perspectives” for qualities
 - Forthcoming book
Timetable

00:00 – 00:10 Introductions
00:10 – 00:40 Overview of viewpoints
00:40 – 00:50 Identify example systems
00:50 – 01:15 Ex1: identify viewpoints
01:15 – 01:30 Break
01:30 – 01:45 Overview of perspectives
01:45 – 02:15 Ex2: identify perspectives
02:15 – 02:30 Review and discussion
Software Architecture in Context

The crucial bridge between requirements and design
Software Architecture in Context

- Requirements frame the architectural problem
 - Stakeholder needs and desires
- Yet, architecture influences requirements
 - “The art of the possible”
 - Helps stakeholder understanding of risk/cost
 - Helps stakeholder understanding of possibilities
Architecture and Requirements

This interplay is core to the architectural process
Overview of Viewpoints

The software architecture of a program or computing system is the structure or structures of the system, which comprise software elements the externally visible properties of those elements, and the relationships among them.

Bass, Clements and Kazman (SEI)
Software Architecture in Practice
Overview of Viewpoints

- Architecture is about defining structures – not one but many
 - Functional structure
 - Information structure
 - Concurrency structure
 - Design time structure
 - …

It’s also very much about properties – we’ll get to these later
Overview of Viewpoints

- Dealing with many structures is hard
 - Organization of ideas
 - Understanding different aspects simultaneously
 - Separating concerns
 - Dealing with different aspects equally
 - Consistency
Overview of Viewpoints

- Typical representation …
Overview of Viewpoints

- Architecture today is largely ad-hoc
 - Little standardisation in description
 - Difficult to compare and discuss alternatives
 - No process for developing architectures

- Need a conceptual framework to
 - Organise the architectural design process
 - Allow classification of ideas
 - Capture knowledge for discussion and reuse
Overview of Viewpoints

- Use views as the organising abstraction for the design and description

 A view is a representation of all or part of an architecture, from the perspective of one or more concerns which are held by one or more of its stakeholders.

 [IEEE Standard 1471 – Recommended Practice for Architectural Description]
Overview of Viewpoints

- Views are fine but …
 - Little more than a documentation convention
 - No help for structuring architectural knowledge or guidance
 - No guidance on process
 - Many common pitfalls for the unwary

We need another concept to work along with views
Overview of Viewpoints

- Use viewpoints as the organising abstraction for the process

A viewpoint is a collection of patterns, templates and conventions for constructing one type of view. It defines the stakeholders whose concerns are reflected in the viewpoint, and guidelines and principles and template models for constructing its views.

[IEEE Standard 1471]
Primary Relationships

Architectural Description

View

Viewpoint

defines

1..*

0..*
Rationale

- Viewpoints provide
 - A store of knowledge and experience
 - A guide to the architect
 - Templates to guide the process

- Views provide
 - A structure for description
 - A separation of concerns
 - Improved stakeholder communication
Overview of Viewpoints

- A number of people have suggested ways of using views for architecture
 - Phillippe Kruchten (“4+1”, 1995)
 - Hofmeister, Nord, Soni (“Siemens Set”, 1999)
 - RM-ODP (1995/96)

All slightly different ideas, leading to some confusion
Overview of Viewpoints

- IEEE Standard 1471-2000
 "IEEE Recommended Practice for Architectural Description"
 - Standardises the fundamental definitions for the approach
 - Rationale, context, content, etc.
 - Provides a meta-model so we can all talk about the same things
Overview of Viewpoints

Viewpoints generally defined in sets

- Philippe Kruchten (“4+1”)
 - Logical, Process, Development, Physical
- Hofmeister, Nord and Soni
 - Conceptual, Module, Execution, Code
- Rozanski and Woods
 - Evolution/specialisation of Krutchen’s “4+1” set
 - Functional, Information, Concurrency, Development, Deployment, Operational
Overview of Viewpoints

- Rozanski and Woods set
 - Aimed at modern, large scale, distributed information systems
 - Extension and refinement of Kruchten’s set
 - Renamed & evolved “Logical”, “Process” and “Physical”
 - “Information” and “Operational” added
 - Defined the contents of the viewpoints
 - Not just noted their existence
Overview of Viewpoints

- Content of our viewpoints
 - Concerns
 - Applicability
 - Stakeholders
 - Models (content, notation, activities)
 - Pitfalls and how to avoid them
Overview of Viewpoints

- Functional
 - The functional structure of the system
 - Fundamental pieces (components, classes, procedures, systems, …)
 - Element, interface, interaction
 - Functional structure model
 - Concerns include
 - Functional coverage
 - Quality of functional structure
Overview of Viewpoints

- Functional – Example Content Fragment

- Display Client
 - StatsAccess
 - Statistics Accessor
 - Element interface and its use by other elements

- Tagged values used to make interface characteristics clear

- Statistics Store
 - ReadStats

- UML “component” represents a system element

- StatsBatchUpdate
 - {type=XML file}
Overview of Viewpoints

- Information
 - The information structure of the system
 - The information stored and how it is used
 - Entity/cluster, relationship, reference, owner, …
 - Augmented high-level data model

- Concerns include
 - Information content and structure
 - Ownership and manipulation of information
Overview of Viewpoints

- Information – Example Content Fragment

Architectural static structure
Overview of Viewpoints

Information – Example Content Fragment

<table>
<thead>
<tr>
<th></th>
<th>Data Warehouse</th>
<th>Statistics Calculator</th>
<th>Statistics Accessor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Statistics</td>
<td>-</td>
<td>CRUD</td>
<td>R</td>
</tr>
<tr>
<td>Reference Data</td>
<td>CRUD</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Summaries</td>
<td>RD</td>
<td>CRU</td>
<td>R</td>
</tr>
</tbody>
</table>

Data ownership model
Overview of Viewpoints

- Concurrency
 - The runtime structure of the system
 - Mapping elements to runtime elements
 - Process/thread, IPC, state
 - Task and coordination model
 - Concerns include
 - Placing elements in appropriate runtime elements
 - Integrity of runtime structure
Overview of Viewpoints

- Concurrency – Example Content Fragment

Functional elements mapped to runtime processes

- **<<process>>** Win32 Client Process
 - DisplayClient

- **<<process>>** Statistics Service Proc.
 - Statistics Accessor

- **<<process group>>** DBMS Processes.
 - Statistics Store

- **<<mutex>>** stats update mutex

- **<<process>>** Statistics Calc. Proc.
 - Statistics Calculator

- Stereotyped class used to represent a process
- Stereotyped class used to represent an IPC mechanism

- Stereotyped class representing a group of related processes to simplify the model

- Relationships representing communication between processes (in some cases involving IPC mechanisms)
Overview of Viewpoints

Development

- The architectural constraints on design/code
 - What must and must not be done
 - The shared development environment
- Module structure, common design & codeline
- Concerns include
 - Common processing and design style
 - Control of development environment
Overview of Viewpoints

- Development – Example Content Fragment

A software module, residing within a layer

Stereotyped package used to represent a layer within the software module structure

Inter-layer dependency relationships showing allowed dependencies between modules in the layers

<<layer>>
domain

Display Client
Statistics Accessor
Statistics Calculator

<<layer>>
utility

Client/Server Library
Logging Library
Message Handling Library
DB Access Library
Overview of Viewpoints

- Deployment
 - The production runtime environment
 - Identification of runtime platforms
 - Node, communication link, dependencies
 - Platform, network & dependency models
 - Concerns include
 - Platform capacity and specification
 - Network link capacity
 - Software stacks required on nodes
Overview of Viewpoints

Deployment – Example Content Fragment

- **Client Machine**
 - memory=256Mb,
 - CPU=950MHz

- **Compute/Access Server**
 - memory=256Mb,
 - CPU=2x1.8GHz
 - Statistics Accessor
 - Statistics Calculator

- **DBMS Server**
 - memory=1Gb,
 - CPU=1x1.5GHz,
 - Disk=8x24Gb SCSI
 - Statistics Store

- **Display Client**

Tagged values used to show required hardware specifications

Functional elements mapped to hardware nodes

Inter-node relationships show required interconnection paths

UML nodes used to represent required hardware elements
Overview of Viewpoints

- Operational
 - The structures required around the system
 - Getting into production, staying reliable there
 - Install elements, tools, dependencies, ...
 - Install, migration, CM, admin, support models
 - Concerns include
 - Installation, migration and backout
 - Effective monitoring and control
 - Recognising and responding to problems
Overview of Viewpoints

- Operational – Example Content Fragment
 - Installation, migration and backout strategies
 - Monitoring and Control strategies
 - Operational configuration management
 - Support model (who is responsible for what, escalation)

- All at the architecture, not detail level
 (constraints & strategies, not procedures)

- Not possible to show a lot here (space)
Overview of Viewpoints

- Administration of the Statistics Reporting System
 - Monitoring and Control
 - Server Message Logging: All server components will write information, warning and error messages to the Windows Event Log.
 - Client Message Logging: The client software will log messages if an unexpected error is encountered. The log will be written to the hard disk of the client.
 - Operational Procedures
 - Backup: Data in the database will need backed up. This will involve […]
 - […]
 - Error Conditions
 - Database Out of Log Space: If transaction volume rises above a certain point then it is possible that the transaction log will fill. This will […]
 - […]
 - Performance Monitoring
 - Database Counters: The following performance counters can be […]
 - […]
<table>
<thead>
<tr>
<th>Time</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:00 – 00:10</td>
<td>Introductions</td>
</tr>
<tr>
<td>00:10 – 00:40</td>
<td>Overview of viewpoints</td>
</tr>
<tr>
<td>00:40 – 00:50</td>
<td>Identify example systems</td>
</tr>
<tr>
<td>00:50 – 01:15</td>
<td>Ex1: identify viewpoints</td>
</tr>
<tr>
<td>01:15 – 01:30</td>
<td>Break</td>
</tr>
<tr>
<td>01:30 – 01:45</td>
<td>Overview of perspectives</td>
</tr>
<tr>
<td>01:45 – 02:15</td>
<td>Ex2: identify perspectives</td>
</tr>
<tr>
<td>02:15 – 02:30</td>
<td>Review and discussion</td>
</tr>
</tbody>
</table>
Exercise Preparation

- Each group needs a system to discuss
 - Break into groups
 - 5 – 10 minutes, choose a system one of you has worked on
 - You will use this system as the example during the exercises
 - Ideally a mid-size distributed information system, but this isn’t crucial
 - Explain the system to your group
Exercise Preparation

- For your system capture
 - Context diagram
 - Outline functional description
 - Key quality requirements
 - Security, performance, availability, …
 - Main functional elements and interfaces
 - Anything else “unusual”
Timetable

00:00 – 00:10 Introductions
00:10 – 00:40 Overview of viewpoints
00:40 – 00:50 Identify example systems
00:50 – 01:15 Ex1: identify viewpoints
01:15 – 01:30 Break
01:30 – 01:45 Overview of perspectives
01:45 – 02:15 Ex2: identify perspectives
02:15 – 02:30 Review and discussion
Exercise 1: Identify Viewpoints

- For your example system
 - Identify the views that are most important to describe it
 - Using the VP definitions as a guide, sketch views for your system on flipcharts
 - Identify any missing aspect to the description
 - Where does this go?
 - Identify any views that you think are missing
Timetable

00:00 – 00:10 Introductions
00:10 – 00:40 Overview of viewpoints
00:40 – 00:50 Identify example systems
00:50 – 01:15 Ex1: identify viewpoints
01:15 – 01:30 Break
01:30 – 01:45 Overview of perspectives
01:45 – 02:15 Ex2: identify perspectives
02:15 – 02:30 Review and discussion
Break

- 15 minutes
Timetable

00:00 – 00:10 Introductions
00:10 – 00:40 Overview of viewpoints
00:40 – 00:50 Identify example systems
00:50 – 01:15 Ex1: identify viewpoints
01:15 – 01:30 Break
01:30 – 01:45 Overview of perspectives
01:45 – 02:15 Ex2: identify perspectives
02:15 – 02:30 Review and discussion
Overview of Perspectives

- Think back to exercise 1
- What were you doing to identify structures?
 - What the system had to do
 - How system had to do it
- The “how” is referred to as the “quality properties” of the system
Overview of Perspectives

- Quality properties are the non-functional characteristics of the system (“-illities”)
 - Performance
 - Efficiency
 - Security
 - Maintainability
 - Availability
 - …
Overview of Perspectives

- Quality properties crucial to stakeholders
 - Slow functions don’t get used
 - Unavailable systems cause business interruption
 - Security problems cause headlines
 - Unmaintainable systems become irrelevant

Yet viewpoints don’t help at all with QPs!
Overview of Perspectives

- QPs are often an afterthought
 - Often expensive to “retro-fit”
 - Disruption to existing operations
 - May conflict with existing QPs
- Addressing QPs is key architectural task
 - Understanding stakeholder “real” needs
 - Trading off between conflicting needs
- Need a framework for thinking about QPs
Overview of Perspectives

Use *perspectives* as the abstraction for dealing with quality properties

An architectural *perspective* is a collection of *patterns, templates and guidelines* to guide the process of ensuring that a *system exhibits* a particular set of closely related *quality properties* that require consideration across a number of the system’s views.

[Rozanski & Woods]
Overview of Perspectives

- A simple idea, but captures the key ideas
 - A store of knowledge and experience
 - A guide to the architect
 - Templates to guide the process
- Analogous to viewpoints but for QPs
- You apply perspectives to the architecture to ensure QPs are acceptable and guide its development
Overview of Perspectives

Architectural Description

View

Perspective

applied to

defines

Viewpoint
Overview of Perspectives

- Our initial core set
 - Performance and Scalability
 - Security
 - Availability and Resilience
 - Evolution
 - Also: Location, I18N, Usability, Regulation, …

These will be different for different domains
Overview of Perspectives

- Content of our perspectives
 - Desired qualities
 - Applicability
 - Concerns
 - Activities
 - Architectural strategies
 - Pitfalls and how to avoid them
Overview of Perspectives

- Performance and Scalability
 - **Concerns**: processing volume, response time, responsiveness, throughput, predictability
 - **Techniques**: performance requirements definition, performance modelling, workload characterisation
Overview of Perspectives

- Security
 - *Concerns*: authentication, authorisation, confidentiality, integrity, accountability, availability, intrusion detection, recovery
 - *Techniques*: threat identification, threat assessment, vulnerability analysis, application of security technology
Overview of Perspectives

- Availability and Resilience

 - Concerns: classes of service, planned / unplanned downtime, mean time between failures, mean time to repair, disaster recovery, redundancy, clustering, failover

 - Techniques: MTBF and MTTR prediction, availability schedules, availability models, availability technology application
Overview of Perspectives

- **Evolution**
 - *Concerns*: flexibility, extensibility, functional evolution, deployment evolution, integration evolution
 - *Techniques*: design for change, architectural assessment, configuration management, automated testing, build and release management
Overview of Perspectives

- Security Perspective
- Accessibility Perspective
- Performance Perspective
- Location Perspective
- Availability Perspective
- Regulation Perspective
- Maintenance Perspective
- etc.

- Functional Views
- Information Views
- Concurrency Views
- Development Views
- Deployment Views
- Operational Views
- architecture

stakeholders
Timetable

00:00 – 00:10 Introductions
00:10 – 00:40 Overview of viewpoints
00:40 – 00:50 Identify example systems
00:50 – 01:15 Ex1: identify viewpoints
01:15 – 01:30 Break
01:30 – 01:45 Overview of perspectives
01:45 – 02:15 Ex2: identify perspectives
02:15 – 02:30 Review and discussion
Exercise 2: Identify Perspectives

- For your example system
 - Identify the perspectives that are most important to consider for it
 - Using the perspective definitions as a guide, sketch views the affect of applying them
 - Identify any missing QP considerations
 - Where are they addressed?
 - Identify any perspectives that you think are missing
Timetable

00:00 – 00:10 Introductions
00:10 – 00:40 Overview of viewpoints
00:40 – 00:50 Identify example systems
00:50 – 01:15 Ex1: identify viewpoints
01:15 – 01:30 Break
01:30 – 01:45 Overview of perspectives
01:45 – 02:15 Ex2: identify perspectives
02:15 – 02:30 Review and discussion
Review and Discussion

- Do we all have the same VP and P sets?
 - Why / why not?
- What VPs and Ps still need to be defined?
- How effective are VPs?
- How effective are Ps?
- What is missing/could be improved?
Review and Discussion

Thanks for coming to the session, we hope you found it useful and interesting.

Let us know how you get on with viewpoints and perspectives.