
Software Architecture
with

Viewpoints and Perspectives

BCS SPA Specialist Group
6th July 2005

ewo@zuhlke.com
www.eoinwoods.info

nick@rozanski.com
www.nick.rozanski.com

Eoin WoodsNick Rozanski

Content

� Defining Software Architecture

� Stakeholders

� The Software Architecture Problem

� Viewpoints to Guide Structure

� Perspectives to Guide Qualities

� Uses for Viewpoints and Perspectives

Defining Software Architecture

A common definition …

The software architecture of a program or computing
system is the structure or structures of the system,
which comprise software elements the externally visible
qualities of those elements, and the relationships
among them

Len Bass, Paul Clements and Rick Kazman (SEI)
Software Architecture in Practice, 2nd Edition

Role of Software Architecture

A crucial bridge between requirements and design

Requirements

Design

Architecture

Software Architecture and Requirements

Requirements frame the architectural problem
- Stakeholder needs and desires

Yet, architecture must influence requirements
- “The art of the possible”

- Helps stakeholder understanding of risk/cost

- Helps stakeholder understanding of possibilities

Software Architecture and Quality Properties

The non-functional system characteristics (“-illities ”)
- Performance, Efficiency, Security, Availability, …

Quality properties are crucial to stakeholders
- Slow functions don’t get used

- Unavailable systems cause business interruption

- Security problems cause headlines

Yet quality properties are often an after-thought

Addressing quality properties is a key architectural task
- Understanding “real” stakeholder needs & required tradeoffs

- Often expensive to “retro-fit”

Stakeholders

Who are Stakeholders?
- People

- Groups

- Entities

Those who have an interest in or concerns about the
realisation of the architecture

The Importance of Stakeholders
- Architectures are built for stakeholders

- Architectural decisions must reflect stakeholder needs

- A wide stakeholder community increases your chance
of success

Stakeholders

Common stakeholder groups

- Acquirers, who pay for it

- Assessors, who check it for compliance

- Communicators, who tell people about it via documents and
training

- Developers, who create it

- Maintainers, who evolve it and fix it

- Suppliers, who provide parts of it

- Support Staff, who help people to use it

- System Administrators, who keep it running

- Testers, who verify that it works

- Users, who have to use it as part of their work

Stakeholders

Attributes of a good stakeholder

- Informed, to allow them to make good decisions

- Committed, to the process and willing to make themselves available
in a constructive manner, even if decisions are hard

- Authorised, to make decisions

- Representative, of their stakeholder group so that they present its
views validly

The Software Architecture Problem

Why software architecture is difficult
- Multi-dimensional problem

- Diverse stakeholder community to serve

- Making trade-offs inherent in the process

- Often no one “right” answer

Architecture practice today is largely ad-hoc
- Little standardisation in description

- Difficult to compare and discuss alternatives

- Unclear how to structure architectural activities

- No framework for handling quality properties

The Software Architecture Problem

We need a conceptual framework

- To organise the architectural design process

• How to relate and organise the different activities

• Where stakeholders fit

- To allow classification and sharing of ideas and best practice

• Proven solutions

• Known problems and pitfalls

- To capture knowledge for discussion and reuse

• Standard form for easy reference

• Summary of major ideas for easy use

Architectural Viewpoints

Dealing with architectural structure

- Decompose the architectural description into views

• Each view addresses one aspect of the architectural structure

- Guide the development of each view via a viewpoint

• The viewpoint contains proven practice, pitfalls, etc.

- Well understood approach

• RUP/Kruchten “4+1”

• Siemens set

• RM-ODP set

• Rozanski & Woods set

- Approach standardised by IEEE standard 1471 (2000)

Viewpoints and Views

IEEE 1471 provides standard definitions

A viewpoint is a collection of patterns, templates and conventions
for constructing one type of view. It defines the stakeholders
whose concerns are reflected in the viewpoint, and guidelines and
principles and template models for constructing its views.

A view is a representation of all or part of an architecture, from
the perspective of one or more concerns which are held by one or
more of its stakeholders.

IEEE Standard 1471 – Recommended Practice for Architectural Description (2000)

Viewpoints and Views

Inter-relationships

Architectural
Description

View Viewpoint

1..*

defines

0..*

Viewpoints and Views

Example viewpoint set

- Functional : elements, connectors, interfaces

- Information : entities, constraints, relationship, ownership, usage

- Concurrency : processes, threads, coordination, element mapping

- Development : layers, module structure, standard design, codeline

- Deployment : hardware, network, dependencies, process mapping

- Operational : installation, migration, administration, support

[Rozanski and Woods; “Software Systems Architecture” – Addison Wesley, 2005]

Viewpoints and Views

Woods/Rozanski Viewpoint Set
- Aimed at modern, large scale, distributed information systems

- Extension and refinement of Philippe Kruchten’s “4+1” set

• Renamed “Logical”, “Process” and “Physical”

• Added “Information” and “Operational”

- Defines the contents of the viewpoints

• Not just noted their existence

Viewpoints and Views

Functional
The functional structure of the system

- Content: the system’s runtime functional elements and their
responsibilities, interfaces, and primary interactions

- Concerns: functional capabilities, external interfaces, internal structure,
and design philosophy

- Models: functional structure model

- Pitfalls: poorly defined interfaces, poorly understood responsibilities,
infrastructure modelled as functional elements, overloaded view,
diagrams without element definitions, difficulty in reconciling the needs
of multiple stakeholders, inappropriate level of detail, “God elements,”
and too many dependencies

Viewpoints and Views

Functional - Example Model Fragment

«external»
Temperature Monitor

Variable Capture

Alarm Initiator

Variable
Reporting

Limit Condition

UML "component" represents
system element

Component interface
and its use by another
component

Stereotype used to indicate
an external entity

{type=XML RPC,
protocol=HTTP,
number=10 concurrent}

Tagged values used
to make interface

characteristics clear

Viewpoints and Views

Information
The information structure, ownership and processing in the system

- Content: how the system stores, manipulates, manages, and
distributes information

- Concerns: information structure and content; information flow; data
ownership; timeliness, latency, and age; references and mappings;
transaction management and recovery; data quality; data volumes;
archives and data retention; and regulation

- Models: static data structure models, information flow models,
information lifecycle models, data ownership models, data quality
analysis, metadata models, and volumetric models

- Pitfalls: data incompatibilities, poor data quality, unavoidable multiple
updaters, key matching deficiencies, poor information latency, interface
complexity, and inadequate volumetrics

Viewpoints and Views

Information - Example Model Fragments

Viewpoints and Views

Concurrency
The packaging of the system into processes and threads

- Content: the concurrency structure of the system, mapping functional
elements to concurrency units to clearly identify the parts of the system
that can execute concurrently, and how this is coordinated and
controlled

- Concerns: task structure, mapping of functional elements to tasks,
inter-process communication, state management, synchronization and
integrity, startup and shutdown, task failure, and re-entrancy

- Models: system-level concurrency models and state models

- Pitfalls: modelling of the wrong concurrency, excessive complexity,
resource contention, deadlock, and race conditions

Viewpoints and Views

Concurrency - Example Model Fragment

<<process>>
Win32 Client Process

DisplayClient

<<process>>
Statistics Service Proc.

Statistics Accessor

<<process>>
Statistics Calc. Proc.

Statistics Calculator

<<mutex>>
stats update mutex

<<process group>>
DBMS Processes.

Statistics Calculator

Stereotyped class
used to represent a
process

Stereotyped class used
to represent an IPC
mechanism

Stereotyped class representing
a group of related processes to
simplify the model

Functional elements mapped
to runtime processes

Relationships representing
communication between processes
(in some cases involving IPC
mechanisms)

Viewpoints and Views

Development
The architectural constraints on the development process

- Content: how the architecture supports and constraints the software
development process

- Concerns: module organization, common processing, standardization
of design, standardization of testing, instrumentation, and codeline
organization

- Models: module structure models, common design models, and
codeline models

- Pitfalls: too much detail, overburdening the AD, uneven focus, lack of
developer focus, lack of precision, and problems with the specified
environment

Viewpoints and Views

Development - Example Model Fragment

<<layer>>
platform

<<layer>>
domain

<<layer>>
utility

Quote Pricer DateScheduler

Servlet
Container Logging Library Message

Handling Library
DB Access

Library

JDBC Driver Java Standard
Library

Stereotyped package used to
represent a layer within the
software module structure

A software module,
residing within a layer

Inter-layer dependency relationships
showing allowed dependencies
between modules in the layers

Explicit inter-module dependency showing
allowed dependency between two specific
modules

Viewpoints and Views

Deployment
The runtime environment and the distribution of software across it

- Content: the environment into which the system will be deployed,
including the dependencies the system has on its runtime environment

- Concerns: types of hardware required, specification and quantity of
hardware required, third-party software requirements, technology
compatibility, network requirements, network capacity required, and
physical constraints

- Models: runtime platform models, network models, and technology
dependency models

- Pitfalls: unclear or inaccurate dependencies, unproven technology, lack
of specialist technical knowledge, and late consideration of the
deployment environment

Viewpoints and Views

Deployment - Example Model Fragment

Primary Server
{memory = 1Gb,
model = V880,
CPU = 2 x 750MHz,
mftr = Sun}

Data Capture Service

Data Access Service

Production Line
Interface

Disk Array
{mftr = sun,
model =
StorEdge4500}

Database Server
{model = E420R,
memory = 2Gb,
mftr = Sun,
CPU = 2 x 450MHz}

Oracle DBMS Instance

Prod. Line Operator PC
{CPU = 750MHz,
memory = 128Mb}

Operator Client

Production Planner PC
{memory = 512Mb,
CPU = 1.2GHz}

Planner Client

IAF23 interface
to production line

monitoring hardware.

Calculation Server
{model = V880,
mftr = Sun,
memory = 1Gb,
CPU = 4 x 1.1GHz}

Predictive Calculator

SCSI connection,
not network

UML nodes used to represent
hardware elements within
deployment environment

Attributes used to indicate
required hardware
specifications

Functional
elements mapped
to hardware
nodes

Inter-node relationships
show required
interconnection paths

Viewpoints and Views

Operational
How the system is installed, migrated to, run and supported

- Content: describes how the system will be operated, administered, and
supported when it is running in its production environment

- Concerns: installation and upgrade, functional migration, data
migration, operational monitoring and control, configuration
management, performance monitoring, support, and backup and
restore

- Models: installation models, migration models, configuration
management models, administration models, and support models

- Pitfalls: lack of engagement with the operational staff, lack of backout
planning, lack of migration planning, insufficient migration window,
missing management tools, lack of integration into the production
environment, and inadequate backup models

Viewpoints and Views

Operational Viewpoint Possible Content
- Installation Model

• Installation groups

• Dependencies and constraints

• Backout strategy

- Operational CM Model

• Configuration groups and dependencies

• Configuration parameter sets

• Operational control (switching between sets)

- Administration Model

• Monitoring and control facilities required and provided

• Required operational procedures and error conditions etc.

Viewpoints and Views

Viewpoints provide

- A store of knowledge and experience

- A guide to the architect

- Templates to guide the process

Views provide

- A structure for description

- A separation of concerns

- Improved stakeholder communication

Viewpoints and Views

Limitations of viewpoints

- Quality properties are critical

- Viewpoints don’t explicitly consider quality properties

- Quality properties usually need cross-viewpoint consideration

- Viewpoints may lead to late consideration of quality properties

Architectural Perspectives

Dealing with quality properties

- Use perspectives to guide the architect in achieving
the required quality properties

• Each perspective addresses one major quality property

- The perspectives guide changes to the views

- A new approach, compatible with viewpoints

• Related to SEI’s “tactics” work

- Recent book from Addison Wesley:

Software Systems Architecture: Working With
Stakeholders Using Viewpoints & Perspectives
Nick Rozanski & Eoin Woods
April 2005

Architectural Perspectives

Defining perspectives

Architectural perspective is a collection of activities, checklists,
tactics and guidelines to guide the process of ensuring that a
system exhibits a particular set of closely related quality properties
that require consideration across a number of the system’s
architectural views.

Rozanski and Woods, 2005

Architectural Perspectives

Adding perspectives to the inter-relationships

Architectural
Description

View Viewpoint

Perspective

1..*

defines

0..*

0..*

applied to

0..*

Architectural Perspectives

A simple but effective idea

- A store of knowledge and experience

- A guide to the architect

- Templates to guide the process

Analogous to viewpoints but for quality properties

Perspectives “applied” to the views to ensure accepta ble
qualities and guide changes where required

Architectural Perspectives with Viewpoints

S
takeholders

Security Perspective

Performance Perspective

Availability Perspective

Maintenance Perspective

Accessibility Perspective

Location Perspective

Regulation Perspective

etc.

A
rchitecture

Development View

Deployment View

Operational View

Functional View

Information View

Information View

Architectural Perspectives

Our initial core set

- Performance and Scalability

- Security

- Availability and Resilience

- Evolution

- Also: Location, I18N, Usability, Regulation, …

Different sets in different domains

Architectural Perspectives

Performance and Scalability
- Required Quality: the ability of the system to predictably execute

within its mandated performance profile and to handle increased
processing volumes

- Concerns: processing volume, response time, responsiveness,
throughput, predictability

- Tactics: Optimize repeated processing, reduce contention via
replication, prioritize processing, consolidate related workloads,
distribute processing over time, minimize the use of shared resources,
partition and parallelize, use asynchronous processing, and make
design compromises

- Pitfalls: Imprecise goals, unrealistic models, use of simple measures
for complex cases, inappropriate partitioning, invalid environment and
platform assumptions, too much indirection, concurrency-related
contention, careless allocation of resources, …

Architectural Perspectives

Performance and Scalability Perspective Activities

Architectural Perspectives

Security
- Required Quality: the ability of the system to reliably control, monitor,

and audit who can perform what actions on these resources and the
ability to detect and recover from failures in security mechanisms

- Concerns: Policies, threats, mechanisms, accountability, availability,
and detection and recovery

- Tactics: threat identification, threat assessment, vulnerability analysis,
application of security technology

- Pitfalls: Complex security policies, unproven security technologies,
system not designed for failure, lack of administration facilities,
technology-driven approach, failure to consider time sources, over
reliance on technology, no clear requirements or models, security as
an afterthought, security embedded in the application code, piecemeal
security, and ad hoc security technology

Architectural Perspectives

Security Perspective Activities

1. Identify

Sensitive

Resources

2. Define Security

Policy

3. Identify Threats

to the System

4. Design

Security

Implementation

5. Assess

Security Risks

[unacceptable]

[acceptable]

Architectural Perspectives

Availability and Resilience
- Required Quality: the ability of the system to be fully or partly

operational as and when required and to effectively handle failures that
could affect system availability

- Concerns: classes of service, planned / unplanned downtime, mean
time between failures, mean time to repair, disaster recovery,
redundancy, clustering, failover

- Tactics: MTBF and MTTR prediction, availability schedules,
availability models, availability technology application

- Pitfalls: Single point of failure, overambitious availability requirements,
ineffective error detection, overlooked global availability requirements,
and incompatible technologies

Architectural Perspectives

Availability and Resilience Perspective Activities

[finished] [not finished]

Architectural Perspectives

Evolution
- Required Quality: the ability of the system to be flexible in the face of

the inevitable change that all systems experience after deployment,
balanced against the costs of providing such flexibility

- Concerns: flexibility, extensibility, functional evolution, deployment
evolution, integration evolution

- Techniques: design for change, architectural assessment,
configuration management, automated testing, build and release
management

- Pitfalls: prioritization of the wrong dimensions, changes that never
happen, impacts of evolution on critical quality properties, lost
development environments, and ad hoc release management

Architectural Perspectives

Evolution Perspective Activities

Architectural Perspectives

Accessibility
- Can the system be used by people with disabilities?

Development Resource
- Can the system be built within people, time, budget constraints?

Internationalisation
- Is the system independent of language, country and culture?

Location
- Will the system work, given its required geographical constraints?

Regulation
- Does the system meet required regulatory constraints?

Usability
- Can people use the system effectively?

Uses of Viewpoints and Perspectives

Viewpoints and Perspectives can

- Mentor novice architects

- Guide working architects

- Support expert architects

Uses of Viewpoints and Perspectives

For Novice Architects

- An introduction to each area of knowledge

- A guide to what is important

- A structure for the process

- Definitions of standards and norms

- Repository of proven practice and tactics

- Checklist to ensure nothing is forgotten

Uses of Viewpoints and Perspectives

For Working Architects

- A reminder of what is important

- A guide to new or rarely used areas of practice

- Repository of proven practice and tactics

- Checklist to ensure nothing is forgotten

Uses of Viewpoints and Perspectives

For Expert Architects

- A framework to allow knowledge sharing

- An aid to tutoring and mentoring

- Checklist to ensure nothing is forgotten

Uses of Viewpoints and Perspectives

Viewpoints and Perspectives can

- Provide a framework for sharing knowledge

- Act as a store of architectural knowledge
• Document proven practice

• Help standardise language and approach

� Help to standardise languages and approaches

- Act as a tutorial for new architects

- Act as a guide for working architects

- Act as aide-memoir for experienced architects

In Case We Didn ‘t Mention It!

Software Systems Architecture:
Working With Stakeholders Using

Viewpoints and Perspectives

Nick Rozanski and Eoin Woods
Addison Wesley 2005

http://www.viewpoints-and-perspectives.info

Nick Rozanski
nick@rozanski.com
www.nick.rozanski.com

Eoin Woods
eoin@copse.org.uk
www.eoinwoods.info

Comments and Questions?

